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Low Energy Properties of (n, n) Carbon Nanotubes
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According to band theory, an ideal undopedn) carbon nanotube is metallic. We show that the
electron-electron interaction causes it to become Mott insulating with a spin gap. More interestingly,
upon doping it develops superconducting fluctuations. [S0031-9007(97)03293-6]

PACS numbers: 71.10.Hf, 71.10.Pm, 71.20.Tx, 78.66.Tr

A carbon nanotube [1] is a graphite sheet wrappedy, — Z(‘“’F)j dx%tw(x)a_.x%ag(x),
into a cylinder form. A pair of integerg:, m) specifies i=R.L a—* & l
the wrapping. Starting from a graphite sheet with the abed (1)
primitive lattice vectorsa,b making an angle 0#60°, H, = Z im_ [ Xmp;w-(x)lp;rb[r’(x)lpkca’(x)lplda(x)-
the (n,m) tube is a cylinder with the axis running 2 '
perpendicular tond + mb, so that atoms separated by |, the second line of Eq. (1) the sum is taken over
na + mb are wrapped onto each other. i,j.k,l=R,L, a,b,c,d =%, and o, 0’ =1,|. The

Considerable efforts have gone into studying the ban%peratorgb* ") = [ dxe"’“a,/ﬁ (x) creates a righeft

structure of carbon nanotubes [2]. The purpose of th'?noving electron with momenturi; + k and with spin
paper is to address the effects of electron-electron in- Here & is the momenta melasured from the right
1

teraction on the low energy properties of them. In agR) or left (Z) Dirac points (Fig. 1). The only nonzero

o.ne—electrorj tight-binding description, where one retains 3's in Eq. (1) are those whose lower and upper indices
single orbital per atom and keeps only the nearest ne'ghhave the following form: (RRRR), (RLRL), (RLLR)
bor hopping, alln # m tubes are band insulators with _ - (+ 4 +4) (5 + =) (+ — +—)(+ — —4),

gaps generally scaling inversely with the radius [2]. Fo;|qu8 those generated by «— — and/orR «— L. We
t_hesg tbes a sufficiently W(_eak_ electron-electron intera abbreviate the twelve independent coupling constant as
tion is not expected to qualitatively change the low en-; herei — 1.0.4- i — 1.2.3.415
ergy properties. The same cannot be said for(the:) giv\‘;v ehrez N for = I ’37R£3]. lculati hich i
tubes, which are band metals. To be precise, for the lat- /e then perform a one-loop calcufation, which is a
ter, two of thedn bands intersect the Fermi level to form straightforward generalization of the one-band calculation

two Dirac points (Fig. 1). Because of the low dimension-[6]- The only complication is that instead of four there

ality and the presence of gapless excitations, the effecfre twelve independent scattering amplitudes. This calcu-

of electron-electron interaction must be examined mordation yields

carefully. N _ 33 33 1.1 _ 2.1
In this paper we perform perturbative renormalization(gl) 81811 8182 ~ 8181 ~ 8182

%roup (F:Gr)] c(alcu)lati(k))ns t[o]anaLyze the low energy Ibe(g%)’ = gigl + gigl — glgd — grgl,
avior of the(n,n) tubes [3]. The microscopic Hamil- 3V ho31 3 9 3 2 3 3 9

tonian consists of a nearest-neighbor tight-binding modefgl) 2eig1 T gig t a8 T gugT togag

for the 7 orbital on each carbon atom (the bonding (g3) = glgh+ghgd —2glgd + g3g3 — gig3

topology is illustrated in Fig. 2) and a Hubbatd plus 21 12

a nearest neighbov for the electron correlations. To §181 — 8282

guild L(ij 6“1 k()effeé:tiwre1 moddel for low tempeI:ature, Welfirstl(gﬁ)’ = (3¢5 — gtgl — g1gs — glgls (2)
iscard all bands that do not intersect the Fermi level, 3., 3 2 3 13 A 1.3 32 3

Second, we regard the two remaining bands as Iinearl)sgz) 8282 T 8482 T 8481 ~ 28482 T 8481 ~ 8a82

di:sphersing, i.e., we ignore the band curvature.ﬁiecaus@j)’ = — glgi+glgs —gigs + glgh —gigl,

of these approximations, a upper energy cutBff has 2N (3.3 1.1, 3.3, 22

to be imposed on our subsequent discussions [4]. In thgg“) (8381 — 8484 + 8181 + 8181)/2.

Hilbert space of the two bands, the original interactior!s(gi)’ = — glgt +2g3g7 —2g3g) +glgl + g7 + glgl,

U andV give rise to twelve independent scattering ampli-

tudesgsse. plus(g})’ = (g3) = (§ﬁ)’ = 0. In the above()’ denotes
The effective Hamiltonian is given bl = Hgx + Hj, d/dx, wherex = In(%)/mvr with E. and E being the

where initial and running energy cutoffs, respectively.
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To draw the implications from the RG equations we compute correlation functigndw) =
[ dx dt e'®(TO(x,1)0 (0,0)) for the following O,

Ocawt (¥) = ¢ 1 ()1 (X) + b (Dhr—t, Osawt (¥) = [¥h 11 ()R —1 () — b 1 ()1 (0)]/2,

Ot (0) = [ 1 (V1 (0) — ik (1 (O1V2, Oii(x) = gih eyl 1) @3)
Ocawa(¥) = P 1)1 () + g (-1 (0) s Osawa () = [ 1 (X1 (x) — o () ()12,

Oss2(¥) = [ 111 (0) = s (] 1 (DVVZ, Oax) = (] 1),

|
plus those generated ® — L and/or+ < —. Inthe (Ox(x))andM; = (O, (x)), where
above, cdw, sdw, ss, and ts stand for charge density wave,
spin density wave, singlet superconductivity, and triplet  ,(x) = [lpitT(x)‘pifT(x) - ¢i++1(x)¢ifl(x)]/2, (5)
superconductivity, respectively. These correlation func-
tions are chosen because of their logarithmic divergenc@here; = L, R as the order parameters. The mean-field
in the absence of interaction. To the lowest ordeg’®  Hamiltonian is the factorized version of
the results are

E. Ko/2mvp H=Hg — ] dx‘ Z (g20i0i+g20i+0,-)
Xa = Naxo(w) Py , i=R.L
(4) + 24105 0; +2¢3040, + He.t.
1 E.
Yol@) = 5 m(—). ©
TVUR w

In the range ofV /U considered here the renormalized
values of all theg’s appearing in Eq. (6) are positive.
Consequently, the mean-field solution predidig =
My = M; = M; = M,. ltis important to note that the
term proportional tog; demands botdfz and M, to be
eal, and the term proportional tg; requires them to
ave the same sign. Consequently, the mean-field theory
completely fixes the U(1) phases of the order parameters
My and M. The only global degree of freedom left is
Hje SU(2) rotation of the order parameter away from the
spinz direction. The Goldstone mode associated with the
latter governs the low energy physics of the SDW1 phase.
Indeed, let us define

Here all N, are unity, except thalVeawi = Neaw2 = 2,
and Kegw1 = gézl - 2gélbl(sdwl = gézl’Kssl = _glzl -

1 _ 1 2 _ 2 1 _ 2 _
84,§ts1 =84~ g4,1fcdw2 S8~ 281, Ksaw2 = 82, Kss2 =
—& — 8K =g — g .

() The undoped case-With the lattice constant
set to unity, the bare values of the coupling constant
1031 _ 3 _ 1_ 2 3 _
are gz—gz;g41g4;U—4V, g1 =81 =8 =
gi=U,andg; = g; = g4 = g4 = U + V. We solve
Eqg. (2) numerically forV/U =1 and find that in all
cases the absolute values of all coupling constants eve
tually diverge. As to the susceptibilities, we find that

for % < (%)C =~ (0.8 the most divergent susceptibility

IS xsaw1, and for (%)C < % < 1 the most divergent

susceptibility iSycqwa. _ t _
(a) The SDW1 phase:For 3 < (1) we perform a Qoo (x) igkw’*”(xw’*”'(x»
mean-field theory using theenormalized Hamiltonian. Spor +
Guided by the susceptibility result, we introdust; = ) ZWHT(XWFT(X» +ee. (7)
- + = + The mean-field solution corresponds @, = 02, =

20Myb6 4. A smooth twist in the direction of the order

2n
L R
FIG. 1. The low-energy band structures (af n) tubes. ‘L”
and “R” label the Dirac points, +” and “—" label the right — ! ! !
and left movers. The dashed line denotes the Fermi level in
the doped case. FIG. 2. The bonding structure é#, n) tubes.
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parameter corresponds@,, = [U"Q°U],,, whereU  we see that the absolute values of all coupling constants
is a smooth space-time dependent SU(2) matrix. After @again eventually diverge. In this case, there are three
proper rescaling of the space and time coordinates, thghases. Fo% < (%)Cl ~ (.55 the most divergent sus-
effective action governing the dynamics of such twists is ceptibility is the superconductingso. FOY(%)M < % <

v . 2
_ 8 2 (7)e2 = 0.65 the most divergent susceptibility w1 -
S 2 f di dx Tr[(0,Q)°]. ®) Finally, for (%)cz < % < 1 the most divergent suscepti-

. . bility IS ycawi-
Unlike the half-filled one-band Hubbard model, the ef- v v .
fective action does not contain a topological term. This is (@) The SS2 phase:For 7 < (7). we introduce
because there are two Dirac points instead of one. Indee@;! — {b1(x)y and A, = (b2(x)) as the order parameters,
it can be shown that each Dirac point contributes a topo‘—N ere
logical term with coefficientsr [7]. Thus, when added

together, their effects cancel [8]. The+ 1-dimensional by (x) = [P (- (x) — (1=D1/V2, (12)
nonlinearo model given by Eq. (8) is always disordered
[9], which indicates a gap in the spin spectrum [10]. and the same expression with — — for by . The

(b) The CDW2 phase:For 1 > % > (%)C, the most mean-field Hamiltonian is the factorized form of [11],
divergent susceptibility ig.qw2. Therefore we introduce

Age = (Oge(x)) andAzg = (Or&(x)), where H = Hg + (3] + ) [ dx[by (x)by(x) + by (x)b(x)]
0ij(x) = g lpita(x)‘pj*zr(x)’ (ij) = (RL),(LR) (9) + (g% + gl ] dxlbi (¥)ba(x) + b5 (x)by(1)].
as order parameters. The mean-field Hamiltonian is the (13)

factorized form of ) ]
For the range ofV/U considered here, after suffi-

H = Hy + %(ng - g)) f dx[OrLOLg + O3, 0;%] cient steps 012‘ renO{maIizatiog;.nL ¢3 becomes negative.
| Mea?]Wh”e'gl + g sf[ayslpc()ﬁsglve. Ilr; the mAean-flelg the-
Ll 2\t + ory the term proportional tdg; + g;) setsA; = —A,.

T3 (281 = 82)[OpOke + OLg O] (10) There is also a continuous family of mean-field solu-
dtions generated by thé,, — e""’ALz transformation.
This degeneracy reflects the global U(1) invariance of
Eq. (13). The Goldstone mode associated wftidomi-
nates the low energy physics of the SS2 phase. If we let
A(x,1) = Age'™D | after proper rescaling of andz, the

For the range o /U considered here the renormalize
(2¢3 — ¢3) and(2g} — g3) are positive and negative re-
spectively. In the mean-field theory the term propor-
tional to (2g7 — g3) sets the sum of the phases Af;

and Az; to 7, i.e., Agz = —Ajz. The mean-field so- . . :

lution is not unique, there being a family of equivalenteﬁecnve action for the Goldstone mode is
mean-field‘ solutions related by thkg;, — ¢/Ag; and , K 0 2

Arg — e A, transformation. This continuous degen- S, = > f dt dx[¢ (T - 2Au>¢} . (14)

eracy reflects the symmetry of Eq. (10) under this trans-

formation. Under such circumstances, there will be 6Here¢ = ¢ andA, is the external gauge field. The
Goldstone mode. To determine the effective action fok,cior of two in front of A, reflects the fact that the
the latter, we letA g, (x, 1) = Age™" and Ak (x, 1) = Cooper pair is doubly charéLed.

—Age """ in the mean-field Hamiltonian and integrate ~ Now we address the effect of impurities on supercon-

out the electronic degrees of freedom [7]. (In the aboveqctivity. For a single impurity the following terms are
f(x,1) is a smooth space-time function.) To determine,yqed to the Hamiltonian:

whether or not this mode is charged, we impose a back-
ground electric fieldE. The details of such a calculation _ abr s+
will be reported elsewhere [8], but the following is the Himp = Z Z i Wiao 050 (0) + He.].

answer. After proper rescaling af and¢, the effective LimRL ab=x (15)
action for¢ is
K L0u ) In the above, “0” is the position of the impurity. The one-
S =% [ dt dx(‘?" i ¢> ’ (11) " loop RG equations for?? are
= ¢lf, ic fi i —+V — (2 1y, —+

Eq. (11) incicates that the Galastone mode s nearal, | (%)~ (63 = 28D /2,

(1) The doped case—In the doped case; = g; = (16)
¢ = 0. Integrating Eq. (2) numerically fov /U < 1, (upg) = (g3 + &7 — 284 — 28))uzs /2,
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plus six other equations obtained bR < L and a global U(1) freedom, namelyAg; — e¢?Ar;. The
+ < —. All otheru«’s do not renormalize. For positive Goldstone mode associated with this U(1) freedom is
bareu;g and ugxg , uzz eventually grows upon renor- again governed by an action of the form Eq. (17). In this
malization, while ugz eventually shrinks. Nominally, case,¢ describes the sliding mode of the charge density
we would drop the latter and keep only the former.wave.
However, within the range of coupling constants where The effects of the long range Coulomb interaction,
we can trust our perturbative analyses,; (uzz) is and the nature of various phase transitions, remain to
only amplified (suppressed) by roughly a factor of 2.be studied. Our recursion relation [Eqg. (2)] has been
For this reason we analyze the effects of all impurityobtained previously in studying various versions of
scattering channels. The results are summarized as fdwo-band models [12]. The relation between our model
lows: (1) The terms introduced by;z,uiz.ug. ,uzr.  and the latter can be established via the identifica-
annihilate the pair. (2) The terms introduced bytion that (R,+) < (A,R),(R,—) < (B,L),(L,+) <
URR » URR > ULL »ULL ULR - ULR - URL »ups break the pair. (B,R),(L,—) < (A,L), where A and B label the two
(3) The terms introduced bygg , ugxr . ui; ,ur; Scatter bands.
it. Therefore a large amount of impurities can destroy We thank Professor S.A. Kivelson, P. McEuen, and
superconductivity through (2), and produce Copper paiDr. V. Crespi for helpful discussions. S.G.L. acknowl-
localization through (3). edges support from NSF Grant No. DMR 95-20554 and
(b) The SDW1 phase:For (1)1 < ¢ < (3)e2 our  U.S. DOE Contract No. DE-AC03-76SF00098.
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